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a b s t r a c t

Double-diffusive convection in vertical annuluses with opposing temperature and concentration
gradients is of fundamental interest and practical importance. However, available literature especially
for higher Rayleigh numbers beyond Ra 6 105 is sparse. In this study, we investigated double diffusion
induced convection up to Ra ¼ 107 using a simple lattice Boltzmann model. Thanks to the good stability
of the present model, a modest grid resolution is sufficient for the present simulations. The influences of
the ratio of buoyancy forces 0:8 6 N 6 1:3, the aspect ratio 0:5 6 A 6 2 and the radius ratio 1:5 6 K 6 3
on heat and mass transfer characteristics are discussed in detail.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Double-diffusive convection, i.e. flows generated by buoyancy
due to simultaneous temperature and concentration gradients
are ubiquitous in natural as well as technical systems. In nature
such flows are frequently encountered in oceans, lakes, solar
pounds, shallow coastal waters and the atmosphere. In industry
examples include chemical processes, crystal growth, energy
storage, material processing such as solidification, food processing
etc. For a review of the fundamental work in this area, see Turner
(1974) and Schmitt (1994).

Available studies related to double-diffusive convection are
mostly concerned with rectangular cavities. Pioneering experi-
ments were carried out by Kamotani et al. (1985). Their work
showed that when a stable stratified solution is heated from one
side, multicellular flow structures can be observed. Later, Gobin
and Bennacer (1996) identified the different regimes dominated
by thermal or solutal effects in terms of the buoyancy ratio and
the Lewis number based on numerical simulations. The instability
of double-diffusive convection has been studied analytically by
Bardan et al. (2000). More recently, Sezai and Mohamad (2000)
and Bergeon and Knobloch (2002) carried out three-dimensional
numerical simulations on double-diffusive convection in cubic cav-
ities, to cite only a few. However, there are only few studies on
double-diffusive convection in vertical annuluses (Retiel et al.,
2006), although convection related phenomena in vertical annu-
ll rights reserved.
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luses are scientifically more interesting than those in rectangu-
lar/cubic cavities (Turner, 1974). Shipp et al. (1993), Shipp et al.
(1993) investigated thermosolutal convection in concentric annu-
lar cavities at low and moderate Lewis numbers. Bennacer et al.
(2000) simulated the thermosolutal convection in vertical annular
cavities containing a porous medium. Recently Retiel et al. (2006)
investigated the effect of the curvature ratio on convectional pat-
terns. The latest work on double-diffusive convection in vertical
annuluses was conducted by Bennacer et al. (2009). In their work,
they studied the Soret effect for double-diffusive convection in
detail. In almost all previous works on this field, the Rayleigh num-
ber was relatively low (Ra 6 105).

In the present work, the double-diffusive convection in vertical
annuluses with opposing temperature and concentration gradients
is reported for higher Rayleigh numbers up to Ra ¼ 107 . The influ-
ences of the ratio of buoyancy forces 0:8 6 N 6 1:3, the aspect ratio
0:5 6 A 6 2 and the radius ratio 1:5 6 K 6 3 on heat and mass
transfer characteristics are discussed in detail in this study. In
order to numerically solve the governing equations for such dou-
ble-diffusive convection, a simple lattice Boltzmann (LB) model,
which is an extension of the model proposed in our previous works
(Chen et al., 2008; Chen et al., 2009), is employed in this paper. The
present model possesses three obvious advantages inherited from
our previous models (Chen et al., 2008; Chen and Tolke, 2009):

1. The present model is algorithmically simple, which is an attrac-
tive advantage for both practitioners and novices.

2. Tts stability and low numerical viscosity allows the use of rela-
tively coarse grids for flow with high Rayleigh numbers which
reduces computational costs. and
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Nomenclature

c fluid particle speed
Xk collision term in Eq. (31)
D coefficient related to Eq. (31)
~u fluid velocity vector
~ek discrete velocity
� o;k;X

0
k source terms in Eqs. (25), (31)

~g gravity
gk; f k distribution function for Eqs. (17), (18) and Eq. (19)
geq

k ; f eq
k equilibrium distribution function for Eqs. (1)–(3)

H height of simulation domain
S Svanberg vorticity
T temperature
R radius
N ratio of buoyancy forces
Pr Prandtl number
Le Lewis number
Ra Rayleigh number
p pressure
K curvature ratio
A aspect ratio
~x phase space

Greek symbols
Dx; Dt grid spacing, time step
j thermal conductivity
a expansion coefficient
m kinematic viscosity
x; w vorticity, streamfunction
s relaxation time for Eq. (25)
sw relaxation time for Eq. (31)
q density
f dimensionless time
fk; nk weights for equilibrium distribution function
d; v coefficients in Eqs. (29) and (30)
l dynamic viscosity

Subscripts and superscripts
l dynamic viscosity
o, i outer, inner
0 reference value
k discrete velocity direction
c concentration
T temperature

z

Ri

Ro

top wall

bottom wall

outer wall

inner wall

T=-0.5
C=-0.5

dT/dz=dC/dz=0

T=0.5
C=0.5

dT/dz=dC/dz=0

gravity

Fig. 1. Configuration of the computational domain and boundary conditions.
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3. The derivation of the present model is quite straightforward as
is often observed for kinetic models (see also the recent review
Yu et al., 2003).

2. Governing equations for double-diffusive convection in
vertical annuluses

The configuration of the vertical annulus is illustrated in Fig. 1.
The inner wall with the radius Ri and the outer wall with Ro.
K ¼ Ro=Ri is the radius ratio. The aspect ratio is defined as
A ¼ H=ðRo � RiÞ, where H is the height of the annular cavity.

Based on the Boussinesq assumption, the primitive-variables-
based governing equations for double-diffusive convection in the
cylindrical coordinate system can be written as (Retiel et al.,
2006; Shipp et al., 1993; Shipp et al., 1993; Chamkha and Al-Naser,
2002)

1
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u and it w are radial and axial velocity components, p is the pres-
sure, T is the temperature, C is the concentration, m is the kinematic
viscosity, g is the gravitational acceleration along the negative
z-axis, j is the thermal conductivity, q is the density, D is the
species diffusivity, aT and ac represent the coefficients of thermal
expansion and compositional expansion respectively.

For double-diffusive convection in a cylindrical coordinate sys-
tem, computation time can be reduced if the problem is reformu-
lated so that the three variables u, w, p are eliminated in favor of
the vorticity x and the Stokes streamfunction w (Chen et al.,
2008; Chamkha and Al-Naser, 2002; Langlois, 1985; Chen et al.,
2008), which are defined as
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w ¼ �1
r
@w
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The dimensionless vorticity–streamfunction-based governing
equations read (Retiel et al., 2006; Shipp et al., 1993; Shipp et al.,
1993)
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in the above equations the parameters with tildes represent the
dimensionless counterparts. We omit the tildes from this point on
for clarity. S ¼ x=r is the Svanberg vorticity (Langlois, 1985).
Pr ¼ m=j is the Prandtl number, Le ¼ j=D is the Lewis number
and Ra ¼ gaTðT � T0ÞðRo � RiÞ3=mj the thermal Rayleigh number.
N ¼ acðC � C0Þ=aTðT � T0Þ is the ratio of buoyancy forces.

In the present study, the boundary conditions are: w ¼ u ¼
w ¼ 0 at all walls, T ¼ 0:5 and C ¼ 0:5 at the inner wall, T ¼ �0:5
and C ¼ �0:5 at the outer wall and @T=@z ¼ @C=@z ¼ 0 at the top
and bottom walls. The initial conditions are w ¼ u ¼ w ¼ 0; T ¼
�0:5 and C ¼ �0:5. The value of Svanberg vorticity S at walls is
calculated using the method proposed in Ref. (Chen et al., 2008).

3. A lattice Boltzmann model for double-diffusive convection in
vertical annuluses

By performing the following coordinate transformation (Chen
et al., 2008; Peng et al., 2003; Halliday et al., 2001; Reis and Phil-
lips, 2008):

ðr; zÞ# ðx; yÞ; ð13Þ
ðu;wÞ# ðu;vÞ: ð14Þ

Eqs. (7)–(12) can be written in pseudo-cartesian coordinates:
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In Eqs. (17)–(20), the source terms caused by the coordinate
transformation and the buoyant forcing due to the temperature
and concentration read
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We note that subsequently u and v stand for the velocity com-
ponents along x- and y-coordinates.

Eq. (17) (governing equation for the flow field), Eq. (18) (gov-
erning equation for the temperature field) and Eq. (19) (governing
equation for the concentration field) have the same advection–dif-
fusion form (including source terms), but with different coeffi-
cients. There are many matured efficient lattice Boltzmann
models for this type of equation (Chen et al., 2008). In this paper
a D2Q5 model is employed to solve these equations which reads:

gkð~xþ c~ekDt; t þ DtÞ � gkð~x; tÞ
¼ �s�1½gkð~x; tÞ � gðeqÞ

k ð~x; tÞ� þ Dt� o;k; ð25Þ

where~ek ðk ¼ 0; . . . ;4Þ are the discrete velocity directions:

~ek ¼
ð0;0Þ k ¼ 0;
ðcosðk� 1Þp=2; sinðk� 1Þp=2Þ k ¼ 1;2;3;4:

�
c ¼ Dx=Dt is the fluid particle speed. Dx, Dt and s are the lattice grid
spacing, the time step and the dimensionless relaxation time
respectively. � o;k is the discrete form of the source term � o (Chen
et al., 2008; Chen et al., 2007), � o ¼ So, To; Co for Eqs. (17)–(19),
respectively. � o;k satisfies:X
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d ¼ S; T;C for Eqs. (17)–(19), respectively and is obtained by
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and the dimensionless relaxation time s is determined by

v ¼ 2c2ðs� 0:5Þ
5

; ð30Þ

v ¼ Pr
Ra1=2, 1

Ra1=2, 1
LeRa1=2 for Eqs. (17)–(19), respectively.

Eq. (20) is just the Poisson equation, which also can be solved by
the LB method (Mei et al., 2006). In the present study, the D2Q5
model used in our previous work (Chen et al., 2008; Chen et al.,
2008) is employed. The evolution equation for Eq. (20) reads

fkð~xþ c~ekDt; t þ DtÞ � fkð~x; tÞ ¼ Xk þX0k; ð31Þ
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2 ð
0:5� swÞ. sw > 0:5 is the dimensionless relaxation time (Chen
et al., 2008). f ðeqÞ

k is the equilibrium distribution function, and de-
fined by
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nk and fk are weight parameters given as n0 ¼ f0 ¼ 0, nk ¼ fk ¼
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The detailed derivation from Eqs. (25) and (31) to Eqs. (17)–(20)
can be found in our previous work (Chen et al., 2009).
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4. Numerical validation

Firstly we validated the present model by setting K ¼ 1:0 and
A ¼ 2:0 which means the infinite curvature and represents a rect-
angular cavity (Retiel et al., 2006). A grid resolution 100 � 200 is
used for the simulation. Figs. 2 and 3 illustrate the isothermal lines,
the isoconcentration lines and the stream lines for N ¼ 0:8 and
N ¼ 1:3 respectively, with Pr ¼ 1:0, Le ¼ 2:0, Ra ¼ 105. For simplic-
ity, the abscissa is normalized by ðr � RiÞ=ðRo � RiÞ, and the ordi-
nate is normalized by z=ðRo � RiÞ for all figures in this paper.
When N < 1:0, the flow is primarily dominated by thermal buoy-
ancy effects, and a large central clockwise thermal recirculation
is predicted with horizontally non-uniform isotherms in the core
region within the enclosure. Furthermore, the concentration con-
tours are distorted in the core of the enclosure with a stable strat-
ification in the vertical direction except near the insulated walls of
the enclosure. A stagnant zone in the corners of the enclosure is
also observed. In contrast, for N > 1:0 the flow is mainly dominated
by compositional buoyancy effects. For N ¼ 1:3, a counterclock-
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Fig. 2. Isothermal lines, isoconcentration lines and stream lines f

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4

Fig. 3. Isothermal lines, isoconcentration lines and stream lines f
wise compositional recirculation exists in the core region of the
enclosure along with two clockwise thermal recirculations occur-
ring near the top right and bottom left corners of the enclosure.
The contours for temperature and concentration are almost paral-
lel to each other within the center of the enclosure away from the
walls. In both cases, the isothermal lines, the isoconcentration lines
and the stream lines are all point symmetric with respect to the
geometric center of the enclosure. The results obtained by the
present model agree well with those in Ref. (Chamkha and Al-Na-
ser, 2002).

To further quantify the results, the average Nusselt number Nu
and the average Sherwood number Sh at the inner wall obtained by
the present model are listed in Table 1 together with reference val-
ues from Ref. (Chamkha and Al-Naser, 2002). The average Nusselt
number Nu is calculated by

Nu ¼ �
Z H

0
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Table 1
Average Nusselt number Nu and average Sherwood number Sh.

Nu Sh

Ref. Chamkha and
Al-Naser (2002)

Present Ref. Chamkha and
Al-Naser (2002)

Present

N ¼ 0:8 3.67 3.6897 4.89 4.9156
N ¼ 1:3 2.10 2.1255 3.15 3.1615
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and the average Sherwood number Sh is calculated by

Sh ¼ �
Z

0H

@C
@r

� �
dz: ð34Þ
Fig. 4. Comparison of velocity, isoconcentrations and isotherms for Pr ¼ 1:0, Le ¼ 2:0, Ra ¼
Naser, 2002); line-present results.

Fig. 5. Comparison of velocity, isoconcentrations and isotherms for Pr ¼ 1:0, Le ¼ 2:0, Ra ¼
Naser, 2002); line-present results.
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Figs. 4 and 5 illustrate the comparison of local values for veloc-
ity, isoconcentrations and isotherms obtained by the present mod-
el with those obtained by the finite difference scheme (Chamkha
and Al-Naser, 2002). The good agreement between them demon-
strates the capability of the present model again.

It is well known that the stability of a numerical scheme may
vary with respect to boundary conditions and other parameters.
In order to give the reader an impression of the stability limit for
the present schme the numerical experiments presented below
indicated that the minimum non-dimensional relaxation time of
the present model is about 0.503 which allows simulations with
element Raleigh numbers up to RaDx ’ Oð105Þ.
105, N ¼ 0:8, A ¼ 2:0 and K ¼ 1:0 along the line Z ¼ 1:0: dot-Ref. (Chamkha and Al-

105, N ¼ 1:3, A ¼ 2:0 and K ¼ 1:0 along the line Z ¼ 1:0: dot-Ref. (Chamkha and Al-
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or Pr ¼ 1:0, Le ¼ 2:0, Ra ¼ 106, N ¼ 0:8, A ¼ 1:0 and K ¼ 1:5.
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5. Results and discussion

In the present study, we investigated double-diffusive convec-
tion in vertical annuluses with opposing temperature and concen-
tration gradients with Ra ¼ 106, 107. To the best of our knowledge,
available publications discussing double-diffusive convection in
vertical annuluses are limited to a range of Ra 6 105 (Retiel et al.,
2006; Shipp et al., 1993; Shipp et al., 1993), and there are few stud-
ies on higher Ra.
The other parameters in the simulation are: Pr ¼ 1:0, Le ¼ 2:0,
0:8 6 N 6 1:3, 0:5 6 A 6 2 and 1:5 6 K 6 3:0. The grid resolution
is fixed to 100 for the horizontal direction and varies from 50 to
200 for the vertical direction according to different values for A.
Figs. 6–15 show the numerical results for Ra ¼ 106.

For K – 1:0, the isothermal lines, the isoconcentration lines and
the stream lines are no longer point symmetric. While N < 1:0, the
flow is primarily dominated by thermal buoyancy effects and one
large clockwise thermal recirculation appears with horizontally
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Fig. 15. Isothermal lines, isoconcentration lines and stream lines for Pr ¼ 1:0, Le ¼ 2:0, Ra ¼ 106, N ¼ 1:3, A ¼ 2:0 and K ¼ 2:0.
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non-uniform isotherms in the core region within the enclosure.
The vortex center is located close to the outer wall and below
the center of the enclosure. As K increases, the cylinders drift apart
and the gradients at the inner wall are lower than that at the outer
one . In addition, the vortex center is slightly shifted downwards.
For low values of K, the concentration contours are distorted only
in the core of the enclosure with a stable stratification in the ver-
tical direction except near the insulated walls of the enclosure.
With increasing K, the distorted region expands to the bottom of
the enclosure. The influence of K on the isothermal lines and the
isoconcentration lines at the top is smaller than at the bottom. In
the shallow enclosure ðA ¼ 0:5Þ, the vortex center is closer to the
outer wall and the horizontal midplane of the enclosure. The con-
centration and temperature contours are less disturbed by the ab-
sence of symmetry than the for the counterpart with A ¼ 1:0.
However, for the tall enclosure A ¼ 2:0, the level of distortion of
the isothermal and the isoconcentration lines is more significant
than for lower values of A. The vortex center moves more closely
to the vertical midplane of the enclosure and further away from
the horizontal midplane. When N > 1:0 the flow is mainly domi-
nated by compositional buoyancy effects, whereas for N < 1:0
the number of vortices varies depending on K and A. For the shal-
low enclosure A ¼ 0:5 and K ¼ 2:0, there is only one counterclock-
wise compositional recirculation. For constant KA ¼ 1:0 , we
observe a counterclockwise compositional recirculation in the core
region of the enclosure together with three clockwise thermal
recirculations occurring near the top and bottom corners of the
enclosure, among them one near the top and two in the vicinity
of the bottom. If A increases, there is still one counterclockwise
compositional recirculation along with three clockwise thermal
recirculations, although the clockwise thermal recirculation which
is closest to the bottom left corner becomes very small. On the con-
trary, the other two clockwise thermal recirculations expand obvi-
ously. Especially, the clockwise thermal recirculation farther away
from the bottom left corner almost occupies half of the cross sec-
tion. The counterclockwise compositional recirculation is com-
pressed into a very narrow region by the clockwise thermal
recirculations. These changes are also reflected by the isothermal



Table 2
Average Nusselt number Nu.

N ¼ 0:8 N ¼ 1:3

A ¼ 1:0; K ¼ 1:5 6.6045 2.9163
A ¼ 1:0; K ¼ 2:0 6.8463 3.0187
A ¼ 1:0; K ¼ 3:0 7.0163 3.3631
A ¼ 0:5; K ¼ 2:0 6.5778 2.5972
A ¼ 2:0; K ¼ 2:0 6.3335 3.9056

Table 3
Average Sherwood number Sh.

N ¼ 0:8 N ¼ 1:3

A ¼ 1:0; K ¼ 1:5 8.3451 5.0899
A ¼ 1:0; K ¼ 2:0 8.7006 5.2019
A ¼ 1:0; K ¼ 3:0 8.8462 5.5581
A ¼ 0:5; K ¼ 2:0 8.5514 5.0826
A ¼ 2:0; K ¼ 2:0 8.0023 5.7536

Table 4
Average Nusselt number Nu and Sherwood number Sh for Ra ¼ 107.

Nu Sh

N ¼ 0:8 12.3830 16.5019
N ¼ 1:3 6.9965 10.8668
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and isoconcentration lines. For A ¼ 0:5, the isothermal and isocon-
centration lines are nearly point symmetric except at the bottom
left and the top right corners. Temperature and concentration con-
tours are almost parallel to each other within the center of the
enclosure away from the walls. As A increases, the isothermal
and isoconcentration lines are distorted obviously and are no long-
er parallel, especially in the low half part of the enclosure and the
plumes starting from the inner wall move farther, almost reaching
the outer wall. It is obvious that in tall enclosures ðN > 1:0Þ, ther-
mal buoyancy effects play an increasingly important role in the
lower half part of the annulus as A increases. When K ¼ 1:5 and
A ¼ 1:0, there is one counterclockwise compositional recirculation
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Fig. 16. Isothermal lines, isoconcentration lines and stream lines
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Fig. 17. Isothermal lines, isoconcentration lines and stream lines
in the core region of the enclosure together with five perceptible
clockwise thermal recirculations occurring near the top and bot-
tom corners of the enclosure. With increasing K, the counterclock-
wise compositional recirculation and one of the clockwise thermal
recirculations obviously expand, but the others are significantly
compressed. For K ¼ 3:0, there are only three clockwise thermal
recirculations remaining whereas for K ¼ 1:5 contours for temper-
ature and concentration are almost parallel to each other within
the center of the enclosure away from the walls and are distorted
as K increases. The plumes starting from the inner wall can ap-
proach the outer wall more easily with bigger K.

Tables 2 and 3 list the average Nusselt number Nu and the aver-
age Sherwood number Sh at the inner wall obtained by the present
model. It is clear that Nu and Sh both are monotonic increasing
functions of K within the range of parameters of the present study.
Nu and Sh also both are monotonic increasing functions of A when
N ¼ 1:3 but not for N ¼ 0:8. These conclusions are in agreement
with previous literature discussing low Ra results (Retiel et al.,
2006; Chamkha and Al-Naser, 2002).

Figs. 16, 17 illustrate the numerical results for Ra ¼ 107, A ¼ 1:0
and K ¼ 2:0 with grid resolution 200 � 200. Beyond Ra ¼ 107, we
found that the flow field becomes unsteady. The isotherms and iso-
concentrations are distorted significantly over the whole domain
except near the vertical walls and additional small structures are
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emerging. Table 4 lists the corresponding average Nusselt number
Nu and Sherwood number Sh. It is obvious that Nu and Sh increase
significantly with Ra.

6. Conclusion

Double-diffusive convection in vertical annuluses with oppos-
ing temperature and concentration gradients is an important issue
in basic theory as well as in engineering. Yet, previous related stud-
ies are limited to Ra 6 105.

In the present study, we introduced a simple lattice Boltzmann
model to investigate such convectional phenomena at higher Ray-
leigh number up to Ra ¼ 107 with Pr ¼ 1:0, Le ¼ 2:0, 0:8 6 N 6 1:3,
0:5 6 A 6 2 and 1:5 6 K 6 3:0.

Firstly, we validated the present model by setting K ¼ 1:0 which
represents a rectangular cavity. The results obtained by the present
model agree quantitatively well with the data available in the lit-
erature. Then we investigated the influences of the ratio of buoy-
ancy forces N, the aspect ratio A and the radius ratio K on the
convectional patterns. When N < 1:0, the flow is primarily domi-
nated by thermal buoyancy effects, whereas for N > 1:0 the flow
is mainly dominated by compositional buoyancy effects. For con-
vective flows with Ra ¼ 106 and N < 1:0, there is only one large
clockwise thermal recirculation in the enclosure, independent of
K and A. On the contrary, the number of vortices varies depending
on K and A when N > 1:0. The average Nusselt number Nu and the
average Sherwood number Sh at the inner wall both are monotonic
increasing functions of K within the range of parameters of the
present study. They are also both monotonic increasing functions
of A for N > 1:0 . For Raleigh numbers beyond Ra ¼ 107, the flow
became unsteady which was outside the scope of this work, but
which could be readily studied by the present model.
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